
Digital Object Identifier (DOI) 10.1007/s100520100649
Eur. Phys. J. C 20, 393–396 (2001) THE EUROPEAN

PHYSICAL JOURNAL C

Perturbative aspects of q-deformed dynamics

J.-z. Zhang1,2,3, P. Osland2

1 Department of Physics, University of Kaiserslautern, P.O. Box 3049, 67653 Kaiserslautern, Germany
2 Department of Physics, University of Bergen, 5007 Bergen, Norway
3 Institute for Theoretical Physics, Box 316, East China University of Science and Technology, Shanghai 200237, P.R. China

Received: 26 February 2001 /
Published online: 11 May 2001 – c© Springer-Verlag / Società Italiana di Fisica 2001

Abstract. Within the framework of the q-deformed Heisenberg algebra a dynamical equation of q-deformed
quantum mechanics is discussed. The perturbative aspects of the q-deformed Schrödinger equation are
analyzed. General representations of the additional momentum-dependent interaction originating from the
q-deformed effects are presented in two approaches. As examples, such additional interactions related to
the harmonic-oscillator potential and the Morse potential are demonstrated.

Recently q-deformed quantum mechanics has attracted
much attention as a possible modification of the ordi-
nary quantum mechanics at short distances. According
to present tests of quantum electrodynamics, quantum
theories based on Heisenberg’s commutation relation are
correct at least down to 10−18 cm. The question arises
whether there is a possible generalization of Heisenberg’s
commutation relation at shorter distances. In searching
for such a possibility considerations of the space structure
are a useful guide. If the space structure at such short
distances exhibits a noncommutative property, and thus
is governed by a quantum group symmetry, it has been
shown that q-deformed quantum mechanics is a possible
pre-quantum theory at short distances. In the literature
different frameworks of q-deformed quantum mechanics
were established [1–16].
The framework of the q-deformed Heisenberg algebra

developed in [2,4] shows a clear physical content: its rela-
tion to the corresponding q-deformed boson commutation
relations and the limiting process of the q-deformed har-
monic oscillator to the undeformed one are clear. In this
framework the q-deformed uncertainty relation shows an
essential deviation from that of Heisenberg [14]: the ordi-
nary minimal uncertainty relation is undercut. A nonper-
turbative feature of the q-deformed Schrödinger equation
is that the energy spectrum exhibits an exponential struc-
ture [3,4,15]. The pattern of quark and lepton masses is
qualitatively explained by such a q-deformed exponential
spectrum [15].
In this paper we discuss perturbative aspects of the q-

deformed Schrödinger equation in the above framework.
The perturbative expansion of the q-deformed Hamilto-
nian possesses a complex structure, which amounts to
some additional momentum-dependent interaction [2–4,
15]. There are two approaches to showing such q-deformed
effects: One includes it in the kinetic-energy term, the

other includes it in the potential. General results are pre-
sented, and as examples the harmonic-oscillator system
and the Morse potential are discussed in some detail.
In the following, we first review the necessary back-

ground of q-deformed quantum mechanics. In terms of q-
deformed phase space variables – the position operator X
and the momentum operator P – the following q-deformed
Heisenberg algebra has been developed [2,4]:

q1/2XP − q−1/2PX = iU, UX = q−1XU, UP = qPU,
(1)

where X and P are hermitian and U is unitary: X† =
X, P † = P , U† = U−1. Compared to the Heisenberg
algebra the operator U is a new member, called the scaling
operator. The necessity of introducing the operator U can
be seen as follows.
The algebra (1) is based on the definition of the hermi-

tian momentum operator P . However, if X is assumed to
be a hermitian operator in a Hilbert space, the q-deformed
derivative [4,17]

∂XX = 1 + qX∂X , (2)

which embodies the noncommutativity of space, shows
that the usual quantization rule P → −i∂X does not yield
a hermitian momentum operator. Reference [4] showed
that a hermitian momentum operator P is related to ∂X

and X in a nonlinear way by introducing a scaling opera-
tor U :

U−1 ≡ q1/2[1 + (q − 1)X∂X ],

∂̄X ≡ −q−1/2U∂X , P ≡ − i
2
(∂X − ∂̄X), (3)

where ∂̄X is the conjugate of ∂X . The operator U is in-
troduced in the definition of the hermitian momentum;
thus, it closely relates to properties of the dynamics and
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plays an essential role in q-deformed quantum mechanics.
The nontrivial properties of U imply that the algebra (1)
has a richer structure than the Heisenberg commutation
relation. In (1) the parameter q is a fixed real number. It
is important to make distinctions for different realizations
of the q-algebra by different ranges of q values [18–20].
Following [2,4] we only consider the case q > 1 in this
paper. In the limit q → 1+ the scaling operator U reduces
to the unit operator, and the algebra (1) reduces to the
Heisenberg commutation relation.
The hermitian momentum P thus defined leads to q-

deformation effects, which are exhibited by the dynami-
cal equation. Equation (3) shows that the momentum P
depends nonlinearly on X and ∂X . Thus the q-deformed
Schrödinger equation is difficult to treat. In this paper we
demonstrate its perturbative aspects.
The q-deformed phase space variables X, P and the

scaling operator U can be realized in terms of undeformed
variables x̂, p̂ of the ordinary quantum mechanics, where
x̂, p̂ satisfy: [x̂, p̂] = i, x̂ = x̂†, p̂ = p̂†. The variables X, P
and the scaling operator U are related to x̂, p̂ by [4]:

X =

[
ẑ +

1
2

]

ẑ +
1
2

x̂, P = p̂, U = qẑ, (4)

where ẑ = −(i/2)(x̂p̂ + p̂x̂) and [A] is the q-deformation
of A, defined by [A] = (qA − q−A)/(q − q−1). Using (4) it
is easy to check that X, P and U satisfy (1).
From (4) it follows that X is represented as a function

of x̂ and p̂ (note that ẑ + (1/2) = −ix̂p̂):

X = i(q − q−1)−1(q(ẑ+1/2) − q−(ẑ+1/2))p̂−1. (5)

Using (5) it is convenient to discuss the perturbative ex-
pansion of X. Let q = ef = 1+ f , with 0 < f � 1. To the
order f2, X reduces to

X = x̂+ f2g(x̂, p̂), g(x̂, p̂) = −1
6
(1 + x̂p̂x̂p̂)x̂. (6)

The q-deformed phase space (X, P ) governed by the
q-algebra (1) is a q-deformation of the ordinary quantum
mechanics phase space (x̂, p̂); thus, the whole machin-
ery of the ordinary quantum mechanics can be applied
to the q-deformed quantum mechanics. By analogy, dy-
namical equations of the quantum system are the same
for the undeformed phase space variables x̂ and p̂ and for
the q-deformed phase space variables X and P . Thus the
starting point for establishing perturbative calculations of
the q-deformed Schrödinger equation is as follows: first one
uses q-deformed phase space variables X and P to write
down the Hamiltonian of the system, then one uses (4) to
express X and P by the undeformed phase space variables
x̂ and p̂.

The q-deformed Hamiltonian with potential V (X) is

H(X,P ) =
1
2µ
P 2 + V (X). (7)

For regular potentials V (X), which are singularity free, to
the order f2 of the perturbative expansion, such potentials
can be expressed by the undeformed variables x̂ and p̂ by

V (X) = V (x̂) + Ĥ(q)
I (x̂, p̂), (8)

with the perturbation

Ĥ
(q)
I (x̂, p̂) = f2

∞∑
k=1

V (k)(0)
k!

(
k−1∑
i=0

x̂(k−1)−ig(x̂, p̂)x̂i

)
,

(9)
where V (k)(0) is the kth derivative of V (x) at x = 0 (x
is the spectrum of x̂). In (9) the ordering between the
noncommutative quantities x̂ and g(x̂, p̂) is carefully con-
sidered. Substituting for g(x̂, p̂) and summing over i, the
above result can be expressed as

Ĥ
(q)
I (x̂, p̂) =

f2

6

∞∑
k=1

V (k)(0)
k!

x̂k (10)

×
(
kx̂2∂2

x̂ + k(k + 2)x̂∂x̂ +
1
6
k(k − 1)(2k + 5)

)
.

The remaining sum over k can be performed in terms of
derivatives of the potential:

Ĥ
(q)
I (x̂, p̂) =

f2x̂2

6

{
x̂V ′(x̂)∂2

x̂ + [x̂V
′′
(x̂) + 3V

′
(x̂)]∂x̂

+
1
3
x̂V

′′′
(x̂) +

3
2
V

′′
(x̂)
}
. (11)

For potentials with singular term X−k, (k = 1, 2, 3,
. . .), one can use the following operator equation to treat
the perturbation expansion:

1
A+B

=
1
A

− 1
A
B
1
A
+
1
A
B
1
A
B
1
A

− 1
A
B
1
A
B
1
A
B
1
A

+ · · · , (12)

where the norms of the operators A and B satisfy ‖B‖ <
‖A‖. Thus to the order f2 the perturbative expansion of
1/X reads

1
X
=
1
x̂

− f2 1
x̂
g(x̂, p̂)

1
x̂
. (13)

For the energy shift, in the state |n〉, corresponding to
(11), we may integrate by parts, and obtain

∆Ê(q)
n = −f2

36

∫ ∞

−∞
dx
{
ψ(0)∗

n (x)V (x) (14)

× [
2x3∂3

x + 9x
2∂2

x − 3]ψ(0)
n (x) + h.c.

}
,

where ψ(0)
n is the unperturbed wave function. One can use

the Schrödinger equation and rewrite this as

∆Ê(q)
n =

f2

6

∫ ∞

−∞
dxψ(0)∗

n (x)

(
V (x){1− 4µx2[V (x)− E]}

−2
3
µEx3V ′(x)

)
ψ(0)

n (x), (15)
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where E is the unperturbed energy.
There is another set of variables x̃ and p̃ of an unde-

formed algebra, which are obtained by a canonical trans-
formation of x̂ and p̂ [4]:

x̃ = x̂F−1(ẑ), p̃ = F (ẑ)p̂, (16)

where (note that ẑ − (1/2) = −ip̂x̂)

F−1(ẑ) =

[
ẑ − 1

2

]

ẑ − 1
2

. (17)

The variables x̃ and p̃ thus defined also satisfy the un-
deformed algebra: [x̃, p̃] = i, and x̃ = x̃†, p̃ = p̃†. Thus
p̃ = −i∂x̃. The q-deformed variables X, P and the scaling
operator U are related to x̃ and p̃ as follows:

X = x̃, P = F−1(z̃)p̃, U = qz̃, (18)

where z̃ = −(i/2)(x̃p̃ + p̃x̃); and with F−1(z̃) defined by
(17) for the variables (x̃, p̃). From (16)–(18) it follows that
X, P and U also satisfy (1), and (18) is equivalent to (4).

Using (18) to the order f2 the perturbative expansions
of P and the kinetic energy P 2/(2µ) read

P = p̃+ f2h(x̃, p̃), h(x̃, p̃) = −1
6
(1 + p̃x̃p̃x̃)p̃, (19)

and
1
2µ
P 2 =

1
2µ
p̃2 + H̃(q)

I (x̃, p̃), (20)

with

H̃
(q)
I (x̃, p̃) =

1
2µ
f2[p̃h(x̃, p̃) + h(x̃, p̃)p̃]

= − 1
12µ

f2[2x̃2∂4
x̃ + 8x̃∂

3
x̃ + 3∂

2
x̃]. (21)

Equations (20) and (21) show that in the (x̃, p̃) system the
perturbative contribution comes from the kinetic-energy
term.
Similar to (14) and (15) (using the Schrödinger equa-

tion and integrating by parts), one can write the energy
shift corresponding to (21) as

∆Ẽ(q)
n =

f2

6

∫ ∞

−∞
dxψ(0)∗

n (x)[V (x)− E]

×{1− 4µx2[V (x)− E]}ψ(0)
n (x). (22)

The two expressions for the energy shift, (15) and (22),
are in fact equal, since the difference is given by

f2

6
E

∫ ∞

−∞
dxψ(0)∗

n (x)

{
1− 4µx2[V (x)− E]

−2
3
x3µV ′(x)

}
ψ(0)

n (x) = 0. (23)
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Fig. 1. Energy shift for the Morse potential, ∆E/f2, versus
A and B, for α = 1

From this last form, (22), it is easy to see that the energy
shift is negative since 〈n|V |n〉 < E. Thus,

∆E(q)
n < 0. (24)

As a first application we consider the q-deformed “har-
monic” system described by the Hamiltonian

H(X,P ) =
1
2µ
P 2 +

1
2
µω2X2 . (25)

First we calculate ∆Ẽ(q)
n in the (x̃, p̃) system. From

(21) or (22) it follows that the shifts of the energy levels
are

∆Ẽ(q)
n = −f2ω

48
(
4n3 + 6n2 + 20n+ 9

)
. (26)

In the (x̂, p̂) system the only nonzero term in (9) is
V (2)(0) = µω2; thus, (9) reduces to

Ĥ
(q)
I (x̂, p̂)

= − 1
12
f2µω2[x̂(1 + x̂p̂x̂p̂)x̂+ (1 + x̂p̂x̂p̂)x̂2]

=
1
12
f2µω2[2x̂4∂2

x̂ + 8x̂
3∂x̂ + 3x̂2]. (27)

The corresponding energy shift, which can also be ob-
tained from (15), is easily seen to be identical to that of
(26).
As noted above, the shift in (26) is negative, and it

increases with n, leading eventually to a breakdown of
perturbation theory for n ∼ (12/f2)1/3. The tendency ex-
hibited by (26) agrees with the observation that for the
q-deformed harmonic oscillator the spectrum has an upper
bound [5].
In the limiting case q → 1+ we have H(X,P ) →

Hun(x̂, p̂) = (1/(2µ))p̂2 + (1/2)µω2x̂2. Only in this sense
H(X,P ) defined in (25) is called the q-deformed “har-
monic” system.
As another example, we study the Morse potential [21]

in its “supersymmetric” form [22], where the ground state
energy vanishes. It is given by the potential

V (x) = A2 +B2e−2αx − 2B
(
A+

α

2
√
2µ

)
e−αx. (28)
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The corresponding energy shift can be obtained from ei-
ther (15) or (22); the result is shown in Fig. 1 for α = 1,
µ = 1, and some range of A and B. For the harmonic os-
cillator, we saw that the shift increased in magnitude with
the unperturbed energy. This is not the case for the Morse
potential, where the shift may increase or decrease with
the unperturbed energy, depending on the parameters.
It should be emphasized again that H̃(q)

I (x̃, p̃) origi-
nates from the kinetic term, whereas Ĥ(q)

I (x̂, p̂) originates
from the potential. At the level of operators, these two
Hamiltonians are different. However, they differ only by a
quantity whose expectation value vanishes.
At short distances, where q-deformation might be rele-

vant, one also expects quantum mechanics to break down
and to have to be replaced by some kind of field the-
ory. Some progress is being made in this area [23]. In a
more realistic theory along such lines, some features of q-
deformed quantum mechanics may survive. It is therefore
hoped that studies of q-deformed dynamics at the level
of quantum mechanics will give some clue for the further
development.
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